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PART- II 

 NON-DETERMINISTIC FINITE AUTOMATA 

FORMAL DEFINATION 
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APPLICATIONS OF NFA 

 NFAs used to reduce the complexity of the mathematical work required to establish 
many important properties in the theory of computation. 

 NFAs are highly applicable to prove closure properties of regular languages in much 
easier way compare to DFAs. 

  Finite State Programming  
  Event Driven Finite State Machine (FSM)  
 Virtual FSM  
  DFA based text filter in Java 
 Acceptors and Recognizers  
 Transducers   
 UML state diagram  
  Hardware Applications 
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TEXT SEARCH: 

Consider pattern P = "abracadabra". Figure 2 shows a Nondeterministic Finite Automaton (NFA) that 
recognizes the language Σ∗P, that is, strings finishing with P. As it can be seen, the automaton has a very 
regular structure. 

 

In above mentioned figure an NFA to search for "abracadabra". The initial state is marked with “i” and 
the final state is double-circled. This NFA can be used for text searching as follows: feed it with the 
characters of T. Each time it recognizes a word, it means that we have read a string in the set Σ∗P, or 
which is the same, we have found the pattern in the text. Then we can report every occurrence of P in T. 
Since the NFA has m + 1 states, its simulation over n text characters takes O(mn) time, in the worst and 
average case. The reason is that, in principle, each NFA state can be active or inactive and we have to 
update them all. This complexity is not appealing if we compare it against the naive algorithm. A clear 
option to reduce search time is to make the automaton deterministic (DFA). In this case, there will be 
only one active state at the time, and processing the automaton over the text will take O(n) search time. 
Figure 3 shows the DFA for the same pattern. As it can be seen, its regularity has been lost. To the 
previous “forward” arrows, a number of “backward” arrows have been added, which handle the case 
where the next text character is not the one we expect to match P. 

 

FINITE AUTOMATA WITH EPSILON(Ɛ) TRANSITIONS  

Epsilon NFA (∈-NFA) is similar to the NFA but have just a minor difference which is epsilon 
(∈) move. The transitions without consuming an input symbol are called ∈-transitions. 

 In the state diagrams, they are usually labeled with the Greek letter ∈ also called lamda. 

 ∈-transitions provide a convenient way of modeling the systems 

 Due to empty move, the first string of language may be an empty or epsilon. 

 

Note: ∈ab∈a = aba, where ∈ is empty. 

Formal Definition of Epsilon-NFA 
The formal definition of  ∈-NFA is represented through 5-tuple (Q, ∑, δ, q0, F) where, 

 Q is a finite set of all states (q0, q1, q2,   … qn) where n is finite number 

 ∑ is a finite set of symbols called the alphabet. i.e. {0, 1}, 

 δ : Q x (∑ U ∈) → 2Q is a total function called as transition function 

 q0 is the initial state from where any input is processed (q0 ∈ Q). 
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 F is a set of final state/states where F will be subset ( ⊆ ) of Q 

 

Examples of Epsilon-NFA 
There are various examples of epsilon-NFA. let explain some of them. 

 

Example 01 
Draw a Finite Automata which accept the string “ab”. 

 

 

 
 

 

 

Example 02 
Draw a Finite Automata which accept the string “a or b”. 

 

Example 03 
Draw a Finite Automata which can accept the string “a or b or c”. 
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Example 04 
Draw a Finite Automata which accept the string “a*” 

 
 
 

Example 05 
Create a ∈-NFA for regular expression: (b)*a 
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UNIT I 

 

PART III 

 

DIFFERENCE BETWEEN NFA AND DFA 

S.NO DFA NFA 

1.  DFA stands for Deterministic Finite 

Automata. 

NFA stands for Non-Deterministic Finite 

Automata. 

2.  When processing a string in DFA, there is 

always a unique state to go next when each 

character is read. It is because, for each 

state in DFA, there is exactly one state that 

corresponds to each character being read. 

In NFA several choices may exist for the 

next state. Can move to more than one state. 

3.  DFA cannot use empty string transition. NFA can use empty string transition. 

4.  In DFA we cannot move from one state to 

another without consuming a symbol. 

NFA allows € (null) as the second argument 

of the transition function. This means that 

the NFA can make a transition without 

consuming an input symbol. 

5.  For every symbol of the alphabet, there is 

only one state transition in DFA. 

We do not need to specify how does the 

NFA react according to some symbol. 

6.  DFA can be understood as one machine. NFA can be understood as multiple title 

machines computing at the same time. 

7.  DFA will reject the string if it ends at other 

than accepting the state 

If all the branches of NFA die or reject the 

string, we can say that NFA rejects the 

string. 

8.  It is more difficult to construct DFA. NFA is easier to construct. 

9.  DFA requires more space. NFA requires less space. 

10.  For every input and output, we can 

construct a DFA machine. 

It is not possible to construct an NFA 

machine for every input and output. 

11.  All DFA is NFA. Not all NFA is DFA. 

12.  Backtracking is allowed in DFA backtracking is not allowed in NFA 
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DEFINATION OF DFA 
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HOW A DFA PROCESS STRINGS 

Acceptors, Classifiers, and Transducers 

 Acceptor (Recognizer)  

An automaton that computes a Boolean function is called an acceptor. All the states of an 

acceptor is either accepting or rejecting the inputs given to it.  

Classifier 

 A classifier has more than two final states and it gives a single output when it terminates 

Transducer 

 An automaton that produces outputs based on current input and/or previous state is called a 

transducer.  

Transducers can be of two types –  

• Mealy Machine − The output depends both on the current state and the current input. 

 • Moore Machine − The output depends only on the current state.  

Acceptability by DFA and NDFA  

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the initial state ends in an 

accepting state (any of the final states) after reading the string wholly. 

 A string S is accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff 

δ*(q0, S) ∈ F 

 The language L accepted by DFA/NDFA is 

{S | S ∈ ∑* and δ*(q0, S) ∈ F} 
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 A string S′ is not accepted by a DFA/NDFA (Q, ∑, δ, q0, F), iff 

δ*(q0, S′) ∉ F 

 The language L′ not accepted by DFA/NDFA (Complement of accepted language L) 

is 

{S | S ∈ ∑* and δ*(q0, S) ∉ F} 

Example  

Let us consider the DFA shown in Figure 1.3. From the DFA, the acceptable strings can be 

derived 

 

 

Strings accepted by the above DFA: {0, 00, 11, 010, 101, ...........} 

 Strings not accepted by the above DFA: {1, 011, 111, ........} 

 

TH LANGUAGE OF DFA 

A DFA is a five-tuple:  

M = (Q, Σ, δ, q0, F)  

Q A finite set of states  

Σ A finite input alphabet  

q0 The initial/starting state, q0 is in Q  

F A set of final/accepting states, which is a subset of Q  

δ A transition function, which is a total function from Q x Σ to Q  

δ: (Q x Σ) –> Q  
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δ is defined for any q in Q and s in Σ, and δ(q,s) = q’ is equal to another state q’ in Q.  

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q 

 

 

 

• Let M = (Q, Σ, δ, q , F) be a DFA and let w be in Σ*. Then w is accepted by M iff  

δ(q ,w) = p for some state p in F.  

• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is the set:  

0 L(M) = {w | w is in Σ* and δ(q ,w) is in F}  

• Another equivalent definition: L(M) = {w | w is in Σ* and w is accepted by M}  

• Let L be a language. Then L is a regular language iff there exists a DFA M such that L = L(M).  

• Notes: 

 – A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and Σ* - L(M). 

 – If L = L(M) then L is a subset of L(M) and L(M) is a subset of L. 

 – Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset of L(M1) 



Formal Languages and Automata Theory 

S.Soundarya (Assitant Professor) 
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CONVERSION OF NFA WITH Ɛ-TRANSITIONS TO NFA WITHOUT Ɛ-

TRANSITIONS 

NFA with ε can be converted to NFA without ε, and this NFA without ε can be converted to 

DFA. To do this, we will use a method, which can remove all the ε transition from given NFA. 

The method will be: 

1. Find out all the ε transitions from each state from Q. That will be called as εclosure{q1} where 

qi ∈ Q. 2. Then δ' transitions can be obtained. The δ' transitions mean a ε-closure on δ moves.  

3. Repeat Step-2 for each input symbol and each state of given NFA.  

4. Using the resultant states, the transition table for equivalent NFA without ε can be built. 

 

EXAMPLE 

Convert the following NFA with ε to NFA without ε. 
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Solutions: We will first obtain ε-closures of q0, q1 and q2 as follows: 

 ε-closure(q0) = {q0}  

ε-closure(q1) = {q1, q2}  

ε-closure(q2) = {q2}  

Now the δ' transition on each input symbol is obtained as: 

 δ'(q0, a)  = ε-closure(δ(δ^(q0, ε),a)) 

                = ε-closure(δ(ε-closure(q0),a))  

                = ε-closure(δ(q0, a)) 

                = ε-closure(q1)  

                = {q1, q2} 

 

δ'(q0, b)    = ε-closure(δ(δ^(q0, ε),b))  

                   = ε-closure(δ(ε-closure(q0),b)) 

                   = ε-closure(δ(q0, b))  

                   = Ф 

Now the δ' transition on q1 is obtained as:  

δ'(q1, a) = ε-closure(δ(δ^(q1, ε),a))  

= ε-closure(δ(ε-closure(q1),a)) 

= ε-closure(δ(q1, q2), a)  

= ε-closure(δ(q1, a) ∪ δ(q2, a))  

= ε-closure(Ф ∪ Ф)  

= Ф 

δ'(q1, b) = ε-closure(δ(δ^(q1, ε),b))  

 = ε-closure(δ(ε-closure(q1),b))  

 = ε-closure(δ(q1, q2), b)  

 = ε-closure(δ(q1, b) ∪ δ(q2, b)) 

 = ε-closure(Ф ∪ q2) 

 = {q2}  

 

The δ' transition on q2 is obtained as: 

 

δ'(q2, a) = ε-closure(δ(δ^(q2, ε),a))  

 = ε-closure(δ(ε-closure(q2),a))  

 = ε-closure(δ(q2, a))  

 = ε-closure(Ф)  

 = Ф  

  

δ'(q2, b) = ε-closure(δ(δ^(q2, ε),b))  
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 = ε-closure(δ(ε-closure(q2),b))  

 = ε-closure(δ(q2, b))  

 = ε-closure(q2)  

 = {q2}  

Now we will summarize all the computed δ' transitions: 

 

δ'(q0, a) = {q0, q1}  

δ'(q0, b) = Ф  

δ'(q1, a) = Ф 

δ'(q1, b) = {q2}  

δ'(q2, a) = Ф  

δ'(q2, b) = {q2} 

 

The transition table can be: 

 
 

State q1 and q2 become the final state as ε-closure of q1 and q2 contain the final state q2. The 

NFA can be shown by the following transition diagram: 

 

 
 

CONVERSION OF NFA TO DFA  

In NFA, when a specific input is given to the current state, the machine goes to multiple states. It 

can have zero, one or more than one move on a given input symbol. On the other hand, in DFA, 

when a specific input is given to the current state, the machine goes to only one state. DFA has 

only one move on a given input symbol. Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the 
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language L(M). There should be equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that 

L(M) = L(M'). 

 

Steps for converting NFA to DFA: 

Step 1: Initially Q' = ϕ 

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state. 

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q', 

then add it to Q'. 

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA) 

 

Example 1:Convert the NFA to DFA 

 

 

Solution: For the given transition diagram we will first construct the transition table. 

 

 

Now we will obtain δ' transition for state q0. 

δ'([q0], 0) = [q0]  

δ'([q0], 1) = [q1]  

 

The δ' transition for state q1 is obtained as: 

δ'([q1], 0) = [q1, q2] (new state generated)  
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δ'([q1], 1) = [q1]  

 

The δ' transition for state q2 is obtained as: 

δ'([q2], 0) = [q2]  

δ'([q2], 1) = [q1, q2]  

 

Now we will obtain δ' transition on [q1, q2]. 

δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0)  

 = {q1, q2} ∪ {q2} 

 = [q1, q2]  

δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1)  

 = {q1} ∪ {q1, q2} 

 = {q1, q2}  

 = [q1, q2]  

The state [q1, q2] is the final state as well because it contains a final state q2. The  

transition table for the constructed DFA will be: 

 

 

The Transition diagram will be: 
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The state q2 can be eliminated because q2 is an unreachable state. 

 

MOORE AND MELAY MACHINES 

Introduction  

A finite automaton (FA) is a simple idealized machine used to recognize patterns within input 

taken from some character set. It has a set of states and rules for moving from one state to 

another but it depends upon the applied input symbol. There are two types of Finite State 

Automata- 

 

Moore Machine (Output on State) 

Mealy Machine (Output on Transition) 

 

A Moore Machine is a finite-state machine whose output depends only on a state, i.e., the 

current state. It is efficient in simplifying a given behaviour. In a State Transition Diagram, each 

state is labelled with an output value. The name 'Moore' came from 'Edward F. Moore'. 

 

Formal Definition of Moore Machine 

Moore and mealy machines accept all regular languages. The output depends only on the current 

state of the machine. The output is represented by current state separated by “/”. 

Moore machine can be described by 6 tuples (Q, q0, ∑, O, δ, λ) where, 

 Q: finite set of states   

 q0: initial state of machine   

 ∑: finite set of input symbols   

 O: output alphabet   

 δ: transition function where Q × ∑ → Q   

 λ: output function where Q → O   
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A Mealy Machine is a finite-state machine whose output depends on present input and a state, 

i.e., the current state. It is efficient in reducing the number of states. In a State Transition 

Diagram, each transition is labeled with an output value. In this, every transition for a particular 

input has a fixed output. 

Tuples of Mealy Machine 

Mealy Machine can be described by 6 tuples (Q, q0, ∑, O, δ, λ’). Let explain above Mealy 

Machine where 

 q0 and q1 are states (Q). 

 q0 is the initial state. 

 Input alphabets (∑) are “0” and “1”.  

 Output alphabets (O) are “a” and “b”.  

 Transition function (Q × ∑ →Q) and output function (Q × ∑ →O)  

Conversion of moore to mealay with examples 

EXAMPLE 1 

The steps involved in this method are: 

1. To redraw the original states without the output. The starting state remains the same. 

2. Draw the transitions as they are on the original machine. 

3. Add output to the transitions based on their destination's output symbol in the original 

machine. 

 

1. We redraw the states without the output: 

 

2. Draw transitions: 
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3. Now we add output to the transitions based on the transition's destination: 

 

Note: The output of the transition  q0→q1 is b, because the transition lands on  q1 which 

had an output b in the original Moore machine. 

EXAMPLE 2 

 

 

The transition table of given Moore machine is as follows: 
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The equivalent Mealy machine can be obtained as follows:  

λ' (q0, a) = λ(δ(q0, a))    

                = λ(q0)    

                = 0    

λ' (q0, b) = λ(δ(q0, b))    

                = λ(q1)    

                = 1    

The λ for state q1 is as follows:  

λ' (q1, a) = λ(δ(q1, a))    

                = λ(q0)    

                = 0    

λ' (q1, b) = λ(δ(q1, b))    

                = λ(q1)    

                = 1    

Hence the transition table for the Mealy machine can be drawn as follows: 

 

The equivalent Mealy machine will be, 
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Conversion of mealay to moore with examples 

The steps involved in this method are: 

1. Select the initial state and draw the transitions by adding the output symbol of that 

transition to the destination state. 

2. Repeat the process for every single transition. 

3. If a conflict occurs, that is, if a state requires to give two different outputs, make a 

duplicate state. 

4. Add transitions for all duplicate states on all input symbols. 

Example 1 

 

1. We take the initial state and draw its first transition: 

 

The transition had an output b , that is now transferred to our destination node  q1. Now, for the 

second transition of state q0: 
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2. We repeat the process: 

 

3. We encounter a conflict on the transition q1→q1 as it has an output a , but the state q1

 already has an input b. So we make a duplicate state: 

 

4. Now we add transitions to the new state: 

 

Note: we know from the Mealy machine that q1 at 0 goes to q0 and gives an output a, so we use 

the same logic to form the new transition. 
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Example 2 

 

Transition table for above Mealy machine is as follows: 

 

The state q1 has only one output. The state q2 and q3 have both output 0 and 1. So we will create 

two states for these states. For q2, two states will be q20(with output 0) and q21(with output 1). 

Similarly, for q3 two states will be q30(with output 0) and q31(with output 1). 

Transition table for Moore machine will be: 
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Transition diagram for Moore machine will be: 
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UNIT -II 

PART –I REGULAR EXPRESSION 

 
FINITE AUTOMATA AND REGULAR EXPRESSION 

 
Regular expressions are used to represent the regular languages in Automata. It is also used in 

compiler designing. Regular expressions are just like arithmetic, logic, and Boolean expressions. 

Operations on Regular Language 

There may be various operations in regular languages. Let “R” be a Regular expression over the 

alphabet Sigma if R is 

 

1. If regular expression (R) is equal to Epsilon (ε), then the language of Regular expression 

(R) will represent the epsilon set, i.e. { ε}. A mathematical equation is given below 

                                       
2. If regular expression (R) is equal to Φ, then the language of Regular expression (R) will 

represent the empty set, i.e. { }. The mathematical equation is given below, 

 
3. If regular expression (R) is equal to an input symbol “a,” which belongs to sigma, then 

the language of Regular expression (R) will represent the set which has “a” alphabet, i.e. 

{a}. A mathematical equation is given below, 

 

 

4. The union of two Two Regular Expressions will always produce a regular language.  

Suppose R1 and R2 are two regular expressions. IF R1= a, R2=b then R1 U R2 =a+b So L(R1 U 

R2) = {a,b}, still string “a,b” is a regular language. 

 
Hence, the above equation shows that {a,b} is also a regular language. 

 

Note: The intersection of two Two Regular Expressions will always produce a regular 

language. 

 

5. Concatenation of two Two Regular Expressions will always produce a regular language. 

 IF R1= a, R2=b then R1.R2 =a.b So L(R1.R2) = {ab}, still string “ab” is a regular language 
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Hence, the above equation shows {ab} is also a regular language. 

 

6. Kleene closure of Regular Expression (RE) is also a regular language 

If R1 = x and (R1)* is still a regular language 

In a regular expression, x* means zero or more occurrences of x.  

It can generate { ε, x, xx, xxx, xxxx, …..} 

In a regular expression, x
+ 

means one or more occurrence of x.  

It can generate {x, xx, xxx, xxxx, …..} 

7. If R is regular, (R) is also a regular language 

Note: Only the above mentioned 7 rules are used for regular expressions. By the combination of 

above 7-rules more regular Expressions can be created. 

 

Types of Regular Expressions 
As we know, regular languages are either finite or infinite. So, Regular expressions can be 

written for both finite and infinite languages. So, types of Regular expressions are of two types 

 

 I. Finite Regular Expressions 
Finite Regular expressions are used to represent the finite regular languages. So, the length of 

finite regular expressions is always limited. 

For example, 
Write the regular expression for the finite language, which accepts all the strings, having the 

length exactly two over ∑ = {a, b}. 

Solution: 
Language for the given example is given below 

L = {aa, ab, ba, bb} // only 4 strings are possible for given condition 

Regular expression for the above language is given below 

L(R) = {aa + ab +ba+bb} 

 

II. Infinite Regular Expressions 
Infinite regular expressions are used to represent the infinite regular languages. So, the length of 

infinite regular expressions is always unlimited. 

 

For example, 
Write the regular expression for the language which accepts all the strings, having the first 

symbol should be “b” and the last symbol should be “a” over ∑ = {a, b}. 

Solution: 

Language for given example is given below 
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L = {ba, baa, baba, bbaa, baaaa, babbbba……….. } // unlimited strings are possible for given 

condition 

Regular expression for above language is given below 

L(R) = b (a+b)* a 

 

Examples of Finite Regular Expressions 
Following are the various examples of finite regular expressions 

 

Example 01 
Write the regular expression for the language which has no string. 

Solution: 
Language for the given example is given below 

L = { } //empty string 

Regular expression for the above language is given below 

L(R) = Φ 

 

Example 02 
Write the regular expression for the language with a string with zero length. 

Solution 
Language for the given example is given below 

L = { ε } //single string 

Regular expression for the above language is given below 

L(R) = ε 

 

Example 03 
Write the regular expression for the language with a string with a single length over ∑ = {a, 

b}. 

Solution 
Language for the given example is given below 

L = { a,b } //string with single length 

A regular expression for the above language is given below 

L(R) = (a+b) 

 

Example 04 
Write the regular expression for the language with a string with the length of two over ∑ = {a, 

b}. 

Solution 
Language for the given example is given below 

L =  (a,b).(a,b) = { aa,ab,ba,bb } //string with length of two 

A regular expression for the above language is given below 

L(R) = (aa+ab+ba+bb) 

Example 05 
Write the regular expression for the language with a string of three over ∑ = {a, b}. 

Solution 
Language for the given example is given below 
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L = (a,b).(a,b). (a,b) = { aaa,abb,aab,baa……..,bbb } //string with length of three 

Regular expression for the above language is given below 

L(R) = (aaa + abb + aab + baa+……..+ bbb) 

 

Example 06 
Write the regular expression for the language with strings with an at-most length of 2 over ∑ = 

{a, b}. 

Language for the given example is given below 

L = (ε,a,b).( ε,a,b) = { ε, a ,b, aa,ba……..,bb } // strings with at-most length of 2 

Regular expression for the above language is given below 

L(R) = (ε+a+b).( ε+a+b) 

 

Example 07 
Write the regular expression for the language with strings “Not More than two a‟s and one b” 

over ∑ = {a, b}. 

Solution 
Language for the given example is given below 

L = { ε, a ,b, aa,aba, aab…….. } // strings with Not More than two a‟s and one b 

Regular expression for the above language is given below 

L(R) = { ε + a + b + aa +aba + aab+…….. } 

 

Examples of Infinite Regular Expressions 
Infinite Regular expressions are used to represent the infinite regular languages. So, the length of 

infinite regular expressions is always Unlimited. 

 

Example 01 

Write the regular expression for the language that accepts all the strings having all 

combinations of a‟s over ∑ = {a}. 

Solution 
Language for the given example is given below 

L = { ε, a, aa, aaa, aaaa, aaaaa, ……….. } 

A regular expression for the above language is given below 

L(R) = a* 

Example 02 

Write the regular expression for the language that accepts all the strings having all 

combinations of a‟s except the null string over ∑ = {a}. 

Solution 
Language for the given example is given below 

L = {a, aa, aaa, aaaa, aaaaa, ……….. } 

A regular expression for the above language is given below 

L(R) = a
+ 

 

Example 03 
Write the regular expression for the language that accepts all the strings, which has any 

number of a‟s and b‟s over ∑ = {a, b}. 



 

S SOUNDARYA(Assistant Professor) 

Solution 

Language for the given example is given below 

L = {a, b, ab, ba, aab, aba, aaba ……….. } 

Regular expression for the above language is given below 

L(R) = (a+b)* 

 

Example 04 
Write the regular expression for the language that accepts all the strings, having only one 

“b” and any numbers of “a” over ∑ = {a, b}. 

Solution 
Language for the given example is given below 

L = {b, ab, aba, abaa, abaaaa, aaaaabaaaaaaa……….. } // all strings having only one “b” 

Regular expression for the above language is given below 

L(R) = a*ba* 

 

Example 05 
Write the regular expression for the language that accepts all the strings, which are starting 

with 1 and ending with 0, over ∑ = {0, 1}. 

Solution 
Language for the given example is given below 

L = {10, 100, 11010, 1110, 1111000, ……….. } // starting with 1 and ending with 0 

Regular expression for the above language is given below 

L(R) = 1(0+1)*0 

 

Example 06 

Write the regular expression for the language that accepts all the strings having even 

length, over ∑ = {0}. 

Solution 
Language for the given example is given below 

L = { ε, 00, 0000, 000000, 00000000, ……….. } 

Regular expression for the above language is given below 

L(R) = (00)* 

 

It is defined as representing a regular expression in terms of regular language. 

 ϕ is regular expression then regular language is { }. 

 ϵϵ is a regular expression then regular language is {ϵ}. 

 r is regular expression then regular language {r}. 

 Let R and S be regular expression then regular language be LR and LS. 

 R + S or R|S be regular expression then regular language is LR U LS. 

 R . S be regular expression then regular language is LR.LS. 

 R* be regular language then regular expression is LR*. 

 R++ be regular language then regular expression is L+R+. 

 where * means 0 or more occurrence ,+ means 1 or more occurrence. 
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Example: 

 
 

 

APPLICATIONS OF REGULAR EXPRESSION: 
1. Regular expressions are useful in a wide variety of text processing tasks, and more 

generally string processing, where the data need not be textual. Common applications 

include data validation, data scraping (especially web scraping), data wrangling, simple 

parsing, the production of syntax highlighting systems, and many other tasks. 

2. While regular expression would be useful on Internet search engines, processing them 

across the entire database could consume excessive computer resources depending on the 

complexity and design of the regex. 

 

 
1. Text Search and Manipulation: Regular expressions are widely recognized for their prowess 

in text search and manipulation, offering a robust mechanism for finding and replacing specific 

patterns or substrings within a given text. This application is particularly valuable for tasks such 

as document editing, codebase maintenance, and data cleaning. In the context of text search, a 

regular expression allows users to define a pattern, specifying the sequence of characters they 

want to locate. This pattern may include literal characters, metacharacters, and quantifiers, 

providing a flexible and expressive syntax. 

For example, a simple regular expression like `\b\d{3}\b` can be used to find three-digit numbers 

in a document, where `\b` denotes a word boundary, and `\d{3}` indicates exactly three digits. 

This enables users to identify and manipulate numerical data efficiently, whether for formatting 

purposes or numerical analysis. 
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Moreover, regular expressions excel in the manipulation of text by enabling the replacement of 

identified patterns with new values. This find-and-replace functionality proves immensely useful 

for tasks such as code refactoring, where developers can efficiently update variable names, 

function calls, or other code elements across multiple files simultaneously. 

 

2. Input Validation: Regular expressions play a crucial role in input validation, ensuring that 

user-provided data adheres to specified formats. In web development, for instance, forms often 

require users to enter information in a particular structure, such as email addresses, phone 

numbers, or dates. Regular expressions offer a powerful means to validate and enforce these 

formats, preventing the submission of incorrect or potentially harmful data. 

Consider a scenario where a website prompts users to enter an email address. A regular 

expression like `^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$` can be employed to 

validate the input against the standard email format. This regex checks for the presence of a 

valid username, domain, and top-level domain, ensuring that the entered data conforms to the 

expected email structure. 

By incorporating regular expressions into form validation processes, developers enhance the 

overall security and reliability of applications, mitigating the risks associated with malformed or 

malicious input. 

 

3. Data Extraction and Parsing: Regular expressions play a pivotal role in data extraction and 

parsing, particularly in scenarios involving log analysis and the processing of structured or semi-

structured data. In log files, which often contain vast amounts of information, regular expressions 

provide a systematic way to extract relevant details based on predefined patterns. 

For instance, consider a log file containing entries with timestamps, IP addresses, and error 

messages. A well-crafted regular expression can be designed to capture and isolate each of these 

components. This facilitates the extraction of specific information, enabling analysts to identify 

trends, troubleshoot issues, and gain valuable insights from the log data. 

In the broader context of data parsing, regular expressions are instrumental in breaking down 

complex data structures into manageable components. Whether dealing with CSV files, XML 

documents, or other formatted data, regex patterns can be tailored to extract meaningful 

information from the raw data, contributing to more effective data analysis and interpretation. 

 

4. Programming and Code Parsing: Regular expressions find extensive application in the 

realm of programming, offering developers a powerful toolset for tasks such as code search, 

refactoring, and syntax highlighting in code editors. When working with large codebases, the 

ability to efficiently locate specific code patterns or elements is crucial for navigation, 

debugging, and code maintenance. 

For instance, a regular expression can be employed to search for all occurrences of a particular 

function or variable name within a project. This enables developers to quickly assess the scope 

of a change, identify potential issues, and streamline the codebase. 

Moreover, in code editors, regular expressions contribute to syntax highlighting by identifying 

and applying distinct styles to different code elements. This visual representation enhances code 

readability and helps developers grasp the structure of the code at a glance. 
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5. Web Development: Regular expressions play a pivotal role in web development, where they 

are employed for tasks ranging from validating user inputs to parsing and manipulating web-

related data. In the context of web forms and user input, regular expressions are instrumental in 

enforcing data format standards. For example, when users submit URLs or dates through a form, 

developers can utilize regex patterns to validate and ensure the correctness of the provided data. 

Consider a scenario where a web application requires users to enter a valid URL. A regular 

expression like `^(https?|ftp)://[^\s/$.?#].[^\s]*$` can be used to validate the format of the URL, 

ensuring that it starts with either “http,” “https,” or “ftp” and follows the standard structure of 

a web address. 

Beyond input validation, regular expressions are employed in parsing HTML documents. While 

it’s generally advised to use dedicated HTML parsers for complex scenarios, regular 

expressions can be handy for simpler tasks such as extracting specific tags, attributes, or 

content. This versatility makes regular expressions a valuable tool in the development of web 

applications, contributing to both functionality and data integrity. 

 

6. Network Security: In the realm of network security, regular expressions contribute 

significantly to pattern matching within network traffic logs, aiding in security analysis and the 

validation of IP addresses. Security professionals utilize regular expressions to identify specific 

patterns indicative of security threats, such as unusual network behavior or known attack 

signatures. 

For instance, a regular expression might be crafted to detect a common type of malicious payload 

in network traffic. The ability to recognize and flag such patterns allows security analysts to 

respond promptly to potential threats, strengthening the overall cybersecurity posture. 

Regular expressions also play a role in the validation of IP addresses. By defining patterns that 

conform to valid IP address formats, network administrators can ensure that the data being 

processed aligns with expected standards. This application contributes to the accuracy of security 

analyses and helps prevent issues arising from incorrectly formatted or manipulated IP addresses. 

 

7. Command-Line Operations: Regular expressions streamline file operations in command-line 

environments, providing a powerful means to search for and manipulate files efficiently. 

Command-line tools often support regular expressions, allowing users to perform complex file-

related tasks with concise and expressive patterns. 

 

For example, the `grep` command, a widely used tool for searching through text, supports 

regular expressions to filter and extract specific lines from files. This capability is particularly 

useful in scenarios where users need to sift through large log files or codebases to find 

occurrences of particular patterns. 

Regular expressions in command-line operations empower users to perform tasks such as bulk 

renaming of files, searching for specific content within files, and filtering files based on 

predefined criteria. This flexibility enhances the efficiency of file-related workflows, making 

regular expressions an indispensable tool for command-line enthusiasts and system 

administrators. 
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8. Database Operations: In the domain of databases, regular expressions are applied to queries 

for filtering and retrieving data based on specific patterns. This capability is valuable for tasks 

such as data cleaning, where patterns need to be identified and modified systematically. 

Consider a database containing customer information, where phone numbers are stored in 

varying formats. A regular expression can be employed in a query to retrieve all records with 

phone numbers adhering to a standardized format, facilitating consistent data presentation. 

Moreover, regular expressions in databases extend beyond simple pattern matching. They can be 

used for more complex tasks, such as identifying and extracting information from unstructured 

data fields. This flexibility makes regular expressions a powerful tool for data analysts and 

database administrators dealing with diverse datasets and data quality challenges. 

 

 

 

 

ALGEBRAIC LAWS FOR REGULAR EXPRESSIONS 
 

1. Associativity Laws for Regular Expressions RegEx 

A + (B + C) = (A + B) + C and A.(B.C) = (A.B).C. 

 

2. Commutativity for Regular Expressions RegEx 

A + B = B + A. However, A.B 6= B.A in general. 

 

3. Identity for Regular Expressions RegEx 

∅ + A = A + ∅ = A and ε.A = A.ε = A 

 

4. Annihilator for Regular Expressions RegEx 

∅.A = A.∅ = ∅ 

 

5. Distributivity for Regular Expressions RegEx 

Left distributivity:  A.(B + C) = A.B + A.C. 

Right distributivity:  (B + C).A = B.A + C.A. 

Idempotent A + A = A. 

 

6. Closure Laws for Regular Expressions RegEx 

 (A*)* = A*, ∅* = ε, ε* = ε, A+ = AA* = A*A, and A* = A + + ε. 

7. DeMorgan Type Law for Regular Expressions RegEx 

 (L + B)* = (L*B*)* 
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CONVERSION OF FINITE AUTOMATA TO REGULAR EXPRESSIONS. 

 
There are two popular methods for converting a DFA to its regular expression − 

 Arden‟s Method 

 State elimination method 

Let‟s consider the state elimination method to convert FA to RE. 

Rules: The rules for state elimination method are as follows − 

Rule 1 

The initial state of DFA must not have any incoming edge. 

If there is any incoming edge to the initial edge, then create a new initial state having no 

incoming edge to it. 

Rule 2 

There must exist only one final state in DFA. 

If there exist multiple final states, then convert all the final states into non-final states and create 

a new single final state. 

Rule 3 

The final state of DFA must not have any outgoing edge. 

If this exists, then create a new final state having no outgoing edge from it. 

Rule 4 

Eliminate all intermediate states one by one. 

Now, apply these rules to convert the FA to RE easily. 

The given FA is as follows − 

 
Step 1 

Initial state q1 has an incoming edge so create a new initial state qi. 

 
Step 2 

Final state q2 has an outgoing edge. So, create a new final state qf. 
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Step 3 

Start eliminating intermediate states 

First eliminate q1 

There is a path going from qi to q2 via q1. So, after eliminating q1 we can connect a direct path 

from qi to q2 having cost. 

εc*a=c*a 

There is a loop on q2 using state qi. So, after eliminating q1 we put a direct loop to q2 having 

cost. 

b.c*.a=bc*a 

After eliminating q1, the FA looks like following − 

 
Second eliminate q2 

There is a direct path from qi to qf so, we can directly eliminate q2 having cost  

C*a(d+bc*a)* ε = c*a(d+bc*a)* 

This is our final regular expression for given finite automata. 

 

CONVERSION OF REGULAR EXPRESSIONS TO FINITE AUTOMATA. 
The steps in this method are given below:- 

Step 1: Make a transition diagram for a given regular expression, using NFA with ε moves. 

Step 2: Then, Convert this NFA with ε to NFA without ε. 

Step 3: Finally, Convert the obtained NFA to equivalent DFA. 

 

Some standard rules help in the conversion of RE to NFA are:- 

1.) If RE is in the form a+b, it can be represented as: 

 

 

 Can represent in  
 

2.) If RE is in the form ab, it can be represented as: 
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 Can represent in  
 

3.) If RE is in the form of a*, it can be represented as: 

 Can represent in  
 

Example 1: Design a Finite Automata from the given RE [ ab + (b + aa)b* a ]. 

 

Solution. At first, we will design the Transition diagram for the given expression. 

 

Step 1 

 

 
 

 

 

 

 

 

Step 2 

 
Step 3 
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Step 4 

 

 
 

After step 5, we have got NFA without ε. Now we will convert it into the required DFA; we will 

first write a transition table for this NFA. 

 

Transition Table For NFA: 

 
 

 
The Corresponding transition table for DFA is: 
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Example 2: Design an NFA from the given RE [ a (a* ba* ba*)* ]. 

 

Solution. The Transition diagram that represents the NFA of the above expression is as follow: 

Step 1: 

 

 
 

 
We have successfully converted the given RE to an NFA. 
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PART-II 

PUMPING LEMMA FOR REGULAR LANGUAGES: 
 

Pumping Lemma for Regular Languages 

 

Theorem: If A is a Regular Language, then A has a Pumping Length „P‟ such that any 

string „S‟ where |S ≥ P may be divided into three parts S = xyz such that the following 

conditions must be true: 

1.) xy
i
z ∈ A for every i ≥ 0 

2.) |y| > 0 

3.) |xy| ≤ P 
In simple words, if a string y is „pumped‟ or insert any number of times, the resultant string still 

remains in A. 

Pumping Lemma is used as proof of the irregularity of a language. It means, that if a language 

is regular, it always satisfies the pumping lemma. If at least one string is made from pumping, 

not in language A, then A is not regular. 

 

We use the CONTRADICTION method to prove that a language is not Regular. 

 

Steps to prove that a language is not Regular using Pumping Lemma: 

Step 1: Assume that Language A is Regular. 

Step 2: It has to have a Pumping Length (say P). 

Step 3: All strings longer than P can be pumped |S| ≥ P. 

Step 4: Now, find a string „S‟ in A such that |S| ≥ P. 

Step 5: Divide S into x y z strings. 

Step 6: Show that xy
i
z ∉ A for some i. 

Step 7: Then consider how S can be divided into x y z. 

Step 8: Show that none of the above strings satisfies all three pumping conditions 

simultaneously. 

Step 9: S cannot be pumped == CONTRADICTION. 

 

Let‟s apply these above steps to check whether a Language is not Regular with the help of 

Pumping Lemma. 

 

Implementation of Pumping lemma for regular languages 

Example: Using Pumping Lemma, prove that the language A = {a
n
b

n
 | n≥0} is Not Regular. 

Solution: We will follow the steps we have learned above to prove this.  

Assume that A is Regular and has a Pumping length = P. 

Let a string S = a
p
b

p
. 

Now divide the S into the parts, x y z. 

To divide the S, let‟s take the value of P = 7. 

Therefore, S = aaaaaaabbbbbbb (by putting P=7 in S = a
p
b

p
). 
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Case 1: Y consists of a string having the letter only „a‟. 

 
 

Case 2: Y consists of a string having the letter only „b‟. 

 
 

Case 3: Y consists of a string with the letters „a‟ and „b‟. 

 
 

For all the above cases, we need to show xy
i
z ∉ A for some i. 

Let the value of i = 2.  xy
i
z => xy

2
z  

 

In Case 1. xy
2
z  = aa aaaa aaaa abbbbbbb 

No of „a‟ = 11, No. of „b‟ = 7. 

Since the No of „a‟ != No. of „b‟, but the original language has an equal number of „a‟ and „b‟; 

therefore, this string will not lie in our language. 

 

In Case 2. xy
2
z  = aaaaaaabb bbbb bbbb b 

No of „a‟ = 7, No. of „b‟ = 11. 

Since the No of „a‟ != No. of „b‟, but the original language has an equal number of „a‟ and „b‟; 

therefore, this string will not lie in our language. 

 

In Case 3. xy
2
z  = aaaa aabb aabb bbbbb 

No of „a‟ = 8, No. of „b‟ = 9. 

 

 

Since the No of „a‟ != No. of „b‟, but the original language has an equal number of „a‟ and „b‟, 

and also, this string did not follow the a
n
b

n
 pattern; therefore, this string will not lie in our 

language. 
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We can see at i = 2 all the above three strings do not lie in the language A = {a
n
b

n
 | n≥0}.  

Therefore, the language A = {a
n
b

n
 | n≥0} is not Regular. 

 

 

Application of pumping lemma 

 

Pumping lemma is to be applied to show that certain languages are not regular. 

It should never be used to show a language is regular. 

 If L is regular, it satisfies the Pumping lemma. 

 If L does not satisfy the Pumping Lemma, it is not regular. 
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PART-III 

CONTEXT FREE GRAMMAR 

Definition of Context-Free Grammars 

 

A context free grammar (CFG) is a forma grammar which is used to generate all the possible 

patterns of strings in a given formal language. 

It is defined as four tuples − 

G=(V,T,P,S) 
 

 G is a grammar, which consists of a set of production rules. It is used to generate the 

strings of a language. 

 T is the final set of terminal symbols. It is denoted by lower case letters. 

 V is the final set of non-terminal symbols. It is denoted by capital letters 

 P is a set of production rules, which is used for replacing non-terminal symbols (on the 

left side of production) in a string with other terminals (on the right side of production). 

 S is the start symbol used to derive the string 

 

Example 

Construct CFG for the language having any number of a's over the set ∑={a} 

Solution 

Regular Expression= a* 

Production rule for the Regular Expression is as follows − 

S->aS rule 1 

S-> ε rule 2 

Now if we want to derive a string "aaaaaa" we can start with start symbol 

Start with start symbol: 

 
The regular expression=a* can generate a set of strings { ε,a,aa,aaa,...} 

We can have a null string because S is a start symbol and rule 2 gives S-> ε 
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Production Rules and Strings 
As we know, every grammar generates a specific language. Each grammar holds some rules, 

which are called Production Rules. Strings are generated by using production rules. Let‟s explain 

both Production Rules and Strings. 

 

What is a string? 
The string is a part of the language. Grammar produces strings through its production rules. The 

length of a string is denoted as |w|, where w is the string. There may be multiple strings in a 

language, including an empty string represented by epsilon (ε) or lambda (λ). 

The following language contains four strings 

L(G) = {a, bb, abc, b} 

Representation: (w|w€ L) 

Number of Strings 
If Σ{a, b} 

The number of Strings (length 2) will be {aa,ab, ba, bb}.Length of String |w| = 2.Possible 

Number of Strings = 4. 

Conclusion: For alphabet {a, b} with length n, the number of strings can be generated = 2
n
. 
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Production Rule 
A production rule is represented by the letter P. Here are some examples of production rules: 

P: S → aSb / ∈ 

The above production rule can be written as 

S → aSb 

S → ∈ 

The Production Rule (P: S → aSb / ∈) can generate the following strings 

 

∈, ab, aabb, aaabbb, ……. 

So, all the above symbols are strings generated through production rules. 

The language with its grammar produces strings using production rules that are represented 

below. 

L(G) = { ∈, ab, aabb, aaabbb…….} = L = { a
n
b

n
 , n>=0 } 

 
The deriving a string from grammar is called a derivation in Automata. The Representation of derivation 

in the form of a tree is called a derivation tree. 

 

Purpose of Derivation 

A derivation tree is useful when a string and grammar (production rules) are given, and we must 

check whether the string belongs to grammar. 

Example of Derivation 

The following production rules are given 

  S → xB 

B → xS| ε 

And suppose a string W= xxx. 

A derivation and its tree are possible if a given string is derived from given production rules. 

Types of Derivation 

There are four basic types of derivations in the theory of Automata 

 Leftmost derivation 
 Rightmost derivation 
 Parse tree 
 Syntax tree 
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However, the first two types of derivations are mainly used. 

 Leftmost and Rightmost derivation, parse, and syntax trees will be similar for 

unambiguous grammars. 
 Leftmost and Rightmost derivation, parse, and syntax trees will not be similar. For 

ambiguous grammar, 

Leftmost Derivation in Automata 

Getting a string by expanding the leftmost nonterminal at each step is called a leftmost derivation 

in Automata. 

 The representation of leftmost derivation in a tree is called a leftmost derivation tree. 
 We read the given input string (W) from left to right in the leftmost derivation tree. 

Example 

S → aS / ∈ 

For generating strings „aaa‟. 

S → aS 

→ aaS (Using S → aS) 

→ aaaS (Using S → aS) 

→ aaa∈ (Using S → ∈) 

→ aaa 

In the example above, we try to change the leftmost non-terminal to get the desired 

output everytime. 
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We expand the tree using the leftmost derivation in the diagram above. 

First, we expand S, the leftmost non-terminal in the given example. Then, we expand the tree in 

the same fashion by first reducing the leftmost non-terminal to get the given input string. 

Therefore, in the tree above, we expand the nodes from the leftmost non-terminal and 

successfully get the given input string. 

Rightmost Derivation: This is the process of deriving the input string by expanding the 

rightmost non-terminal. 

In the rightmost derivation, we derive the string by changing the rightmost non-terminal to get 

the input string. 

Example 

S → aSS / ∈ 

For generating strings „aaa‟. 

S →aSS 

Note: Here, we try to add production rules to the rightmost non-terminal(i.e., S). This 

continues for the next steps as well. 
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We try to change the S in the example everytime because it is the rightmost non-

terminal. 

→aSS (Using S → aS) 

→aSaS (Using S → aS) 

→aSaaS (Using S → aS) 

→aSaaS (Using S → ∈) 

→aSaa (Using S → ∈) 

→aaa (Using S → ∈) 

In the example above, we try to change the rightmost non-terminal to get the desired 

output. 

 

 

In the diagram, we expand the tree using the rightmost derivation. 

First, we expand the rightmost non-terminal, S, in the given example. Then, we 

expand the tree in the same fashion by first reducing the rightmost non-terminal to get 

the given input string. 

Therefore, in the tree above, we expand the nodes from the rightmost non-terminal and 

successfully get the given input string. 
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THE LANGUAGE OF A GRAMMAR 

There are four major types of grammars in the theory of Automata. 

 Regular Grammar 

 Context Free Grammar 

 Context Sensitive Grammar 

 Unrestricted Grammar 

 

                 Let‟s explain all the above types of Grammar in detail. 

1. Regular Grammar (RL) 

Regular Grammar generates the Regular Languages, and the Finite Automata Machine 

accepts all regular languages. Regular Grammar is also called Type-3 grammar. 

 

Regular languages are of two types. 

I. Finite Regular Languages 

II. Infinite Regular Languages 

Finite Automata Machine is also of two types 

I. Deterministic Finite Automata (DFA) 

II. Non-Deterministic Finite Automata (NDFA) 

All regular languages, either finite or infinite, are accepted by NDFA. However, all 

regular languages and some infinite languages are accepted by DFA. 



 

S SOUNDARYA(Assistant Professor) 

2. Context Free Grammar (CFG) 

Context-free Grammar generates Context-free Languages, and the Pushdown Automata Machine 

accepts all context-free languages. Context-free Grammar is also called Type-2 grammar. 

 

Context Free languages are of two types 

I. Deterministic Context-Free Languages 
II. Deterministic Context-Free Languages 

Pushdown Automata Machine is also of two types 

I. Deterministic Pushdown Automata (DPDA) 

II. Non-Deterministic Pushdown Automata (NPDA) 

All Deterministic Context-Free languages are accepted by Deterministic Pushdown Automata 

(DPDA). But all Non-Deterministic Context-Free languages are accepted by Non-

Deterministic Pushdown Automata (NPDA). 

3. Context Sensitive Grammar (CSG) 

Context-sensitive Grammar generates context-sensitive languages, and linear bound automata 

machines accept all context-sensitive languages. Context-free Grammar is also called Type-1 

grammar. 

 

Note: Context-sensitive languages and their machines are not deterministic or non-deterministic. 
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4. Unrestricted Grammar 

Unrestricted Grammar generates the Recursive enumerable Languages, and the Turing Machine 

accepts all Recursive enumerable languages. Unrestricted Grammar is also called Type-0 

grammar. 
 

 
Chomsky Hierarchy 

An explanation of all four types of Grammar is known as the Chomsky hierarchy. A diagram of 

Chomsky‟s hierarchy is given below. 

 
 

Necessary: Type-0 Accepter has the Highest Power, and Type-3 accepter has the lowest 

Power. It means type -3 accepted, which means Turing Machine can accept all languages, 

whether regular, context-free, or context-sensitive. However, the Type-3 accepter, Finite 

Automata, can accept only regular languages. 
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PARSE TREES 

The process of deriving a string from a given grammar is called derivation. 

The geometrical representation of a derivation is known as a derivation tree or parse tree. 

 

In Parse Tree, the deepest sub-tree from leftmost is traversed first by following the rule of In-order 

traversal. In this way, the original input string is obtained, but 

 All leaf nodes must be terminals. 

 All interior nodes must be Non-terminals. 

Example of Parse Tree 

Suppose the following Production rules of a Grammar (G) 

S → S + S | S * S   

S → x|y|z   

and Input is (x * y + Z) 

Step 1 

 

Step 2 
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Step 3 

 

STEP 4 

 

STEP 5 

 

Syntax Tree In Automata  

When constructing a parse tree in Automata, it may contain unnecessary details. So, it is very 

difficult for a compiler to execute unnecessary information. That‟s why a syntax tree, which 

holds just the necessary information, is used. 
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Example of Syntax Tree 

Consider the following Parse tree. 

 

The above parse tree provides the string “id + id * id.” Let us eliminate the extra information from the 

given parse tree to get the same string. 

 

Hence, A String “id + id * id” is derived by eliminating unnecessary information. It is called a syntax 

tree. 

Abstract syntax tree 

Abstract syntax tree can be represented as follows 
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In compiler, the Abstract syntax trees are important because the abstract syntax tree contains the 

least unnecessary information. 

A CFG is said to be ambiguous if and only if it contains more than one derivation trees for same 

string. 

1. Definition of Ambiguous Grammar: Let G = (N,T, P, S ) be a CFG. A string w ∈ 

L(G) is said to be “ambiguously derivable “if there are two or more different 

derivation trees for that string in G. 

2. Definition of Ambiguous Grammar: A CFG given by G = (N, T, P, S) is said to be 

“ambiguous” if there exists at least one string in L(G) which is ambiguously 

derivable. Otherwise it is unambiguous. 

Ambiguity is a property of a grammar, and it is usually, but not always possible to find an 

equivalent unambiguous grammar. 

An “inherantly ambiguous language” is a language for which no unambiguous grammar exists. 

 

Solved Example: 

Show that the grammar G with production 

S → a | aAb | abSb 
A → aAAb | bS 

is ambiguous. 
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Solution: 

 S ⟹ abSb          ( ∵ S → abSb) 
⟹ abab           (∵ S → a) 
Similarly, 
        S ⟹ aAb            ( ∵ S → aAb) 
⟹ abSb          (∵ A → bS) 
⟹ abab           (∵ S → a) 
Since „abab‟ has two different derivations, the grammar G is ambiguous. 

Proof of CFG is ambiguous or not by using parse tree solved example: 

Consider the grammar G with production: 
S → aSS 
S → b 
The parse trees are as follows. 

Top down Parsing: Sequence of rules are applied in a leftmost derivation in Top down parsing. 

Top down Parsing Tree 

Bottom-up Parsing: Sequence of rules are applied in a rightmost derivation in Bottom-up parsing. 
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Bottom-up Parsing Tree 

 Hence it is ambiguous because it consist more than one parse tree for a string w of L(G). To 

understand the parsing, A grammar can be used in two ways: 

1. Using the grammar to generate strings of the language. 

2. Using the grammar to recognize the strings. 

“Parsing” a string is finding a derivation (or a derivation tree) for that string. 

Parsing a string is like recognizing a string. The only realistic way to recognize a string of a 

context-free grammar is to parse it. 
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Ambiguous Grammar 

A grammar is said to be ambiguous grammar if any string generated by it produces more than 

one. 
Parse tree 
Or syntax tree 
Or leftmost derivation 
Or rightmost derivation 

Examples of Ambiguous Grammar 

Example 01 

Check whether the following grammar is ambiguous or not for string w = ab 

S → A / B 
A → aAb / ab 
B → abB / ∈ 

Solution 

Now, we draw more than one parse tree to get the string w = ab. 

 

 

The original string (w =ab)  can derived through two different parse trees. So,  the given grammar is 

ambiguous. 
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Unambiguous Grammar 

A grammar is said to be unambiguous grammar if every string generated by it produces exactly 

one. 
Parse tree 
Or syntax tree 
Or leftmost derivation 
Or rightmost derivation 
Note: So, If we try to derive more than one tree of unambiguous grammar, then all trees will be 

similar 

Examples of Unambiguous Grammar 

Example 01 

For string “aab” the following grammar is unambiguous 

S → AB   
A → Aa | a   
B → b 

Solution 

Let‟s draw the leftmost and rightmost derivations of the above grammar to get the string “aab.” 

 
Because all parse trees, syntax trees, and left or right derivations will be similar for the above 

grammar of string “aab.” So, the above grammar is unambiguous.   
 



 
 
 

  1 

S.SOUNDARYA(Assistant Professor) 

The Structure of a compiler (Phases of Compiler / Compiler Design) 
 

The structure of compiler consists of two parts: 

1. Analysis part(also known as Front end) 

2. Synthesis part(also known as Back end) 

 

Analysis part 

• Analysis part breaks the source program into constituent pieces and imposes a 

grammatical structure on them which further uses this structure to create an 

intermediate representation of the source program. 

• Information about the source program is collected and stored in a data structure 

called symbol table. 

 
Synthesis part 

• Synthesis part takes the intermediate representation as input and transforms it to 

the target program. 

 
 

The design of compiler can be decomposed into several phases, each of which converts 

one form of source program into another. 

 

The different phases of compiler are as follows: 

1. Lexical analysis 

2. Syntax analysis 

3. Semantic analysis 

4. Intermediate code generation 

5. Code optimization 

6. Code generation 
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All of the mentioned phases involve the following tasks: 

• Symbol table management. 

• Error handling. 

 
1.Lexical Analysis 

• Lexical analysis is the first phase of compiler which is also termed as scanning. 

• Source program is scanned to read the stream of characters and those characters are 

grouped to form a sequence called lexemes which produces token as output. 

• Token: Token is a sequence of characters that represent lexical unit, which matches with 

the pattern, such as keywords, operators, identifiers etc. 

• Lexeme: Lexeme is instance of a token i.e., group of characters forming a token. , 

• Pattern: Pattern describes the rule that the lexemes of a token takes. It is the structure 

that must be matched by strings. 

• Once a token is generated the corresponding entry is made in the symbol table. 
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Input: stream of characters 

Output: Token 

Token Template: <token-name, attribute-value> 

(eg.) c=a+b*5; 

 

 
 

2. Syntax Analysis 

• Syntax analysis is the second phase of compiler which is also called as parsing. 

• Parser converts the tokens produced by lexical analyzer into a tree like representation 

called parse tree. 

• A parse tree describes the syntactic structure of the input. 

 
Syntax tree is a compressed representation of the parse tree in which the operators appear 

as interior nodes and the operands of the operator are the children of the node for that 

operator. 

Input: Tokens 
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Output: Syntax tree 

 

 
 

3. Semantic Analysis 

• Semantic analysis is the third phase of compiler. 

• It checks for the semantic consistency. 

• Type information is gathered and stored in symbol table or in syntax tree. 

• Performs type checking. 

 
 

4. Intermediate Code Generation 

• Intermediate code generation produces intermediate representations for the source 

program which are of the following forms: 

1. Postfix notation 

2. Three address code 

3. Syntax tree 

Most commonly used form is the three address code 

        t1 = inttofloat (5) 

        t2 = id3* tl 

        t3 = id2 + t2 

        id1 = t3 

Properties of intermediate code 
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• It should be easy to produce. 

• It should be easy to translate into target program. 

 

5. Code Optimization 

•Code optimization phase gets the intermediate code as input and produces optimized 

intermediate code as output. 

• It results in faster running machine code. 

• It can be done by reducing the number of lines of code for a program. 

• This phase reduces the redundant code and attempts to improve the intermediate code so 

that faster-running machine code will result. 

• During the code optimization, the result of the program is not affected. 

To improve the code generation, the optimization involves 

1. Deduction and removal of dead code (unreachable code). 

2. Calculation of constants in expressions and terms. 

3. Collapsing of repeated expression into temporary string. 

4. Loop unrolling. 

5. Moving code outside the loop. 

6. Removal of unwanted temporary variables. 

                   t1 = id3* 5.0 

                   id1 = id2 + t1 

6. Code Generation 

• Code generation is the final phase of a compiler. 

• It gets input from code optimization phase and produces the target code or object code as 

result. 

• Intermediate instructions are translated into a sequence of machine instructions that 

perform the same task. 

• The code generation involves 

1. Allocation of register.php and memory. 

2. Generation of correct references. 

3. Generation of correct data types. 

4. Generation of missing code. 

                LDF R2, id3 

                MULF R2, # 5.0 

                LDF R1, id2 
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                ADDF R1, R2 

                STF id1, R1 

 

Symbol Table Management 

• Symbol table is used to store all the information about identifiers used in the program. 

• It is a data structure containing a record for each identifier, with fields for the attributes of 

the identifier. 

• It allows finding the record for each identifier quickly and to store or retrieve data from 

that record. 

• Whenever an identifier is detected in any of the phases, it is stored in the symbol table. 

Example:   int a, b; float c; char z; 

 
Example 

1. extern double test (double x); 

2. double sample (int count) { 

3. double sum= 0.0; 

4. for (int i = 1; i &lt; = count; i++) 

5. sum+= test((double) i); 

6. return sum; 

7. } 
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Error Handling 

• Each phase can encounter errors. After detecting an error, a phase must handle the error 

so that compilation can proceed. 

• In lexical analysis, errors occur in separation of tokens. 

• In syntax analysis, errors occur during construction of syntax tree. 

• In semantic analysis, errors may occur at the following cases: 

(i) When the compiler detects constructs that have right syntactic structure but no meaning 

(ii) During type conversion. 

• In code optimization, errors occur when the result is affected by the optimization. In code 

generation, it shows error when code is missing etc. 

Figure illustrates the translation of source code through each phase, considering the 

statement 

    c =a+ b * 5. 

Error Encountered in Different Phases 

Each phase can encounter errors. After detecting an error, a phase must somehow deal with 

the error, so that compilation can proceed. 

A program may have the following kinds of errors at various stages: 

Lexical Errors 

It includes incorrect or misspelled name of some identifier i.e., identifiers typed incorrectly. 

Syntactical Errors 

 It includes missing semicolon or unbalanced parenthesis. Syntactic errors are handled 

by syntax analyzer (parser). 

 When an error is detected, it must be handled by parser to enable the parsing of the 

rest of the input. In general, errors may be expected at various stages of compilation 

but most of the errors are syntactic errors and hence the parser should be able to 

detect and report those errors in the program. 

 

The goals of error handler in parser are: 

• Report the presence of errors clearly and accurately. 

• Recover from each error quickly enough to detect subsequent errors. 

• Add minimal overhead to the processing of correcting programs. 

 

There are four common error-recovery strategies that can be implemented in the parser to 

deal with errors in the code. 
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1. Panic mode. 

2. Statement level. 

3. Error productions. 

4. Global correction 

Semantical Errors 

These errors are a result of incompatible value assignment. The semantic errors that the 

semantic analyzer is expected to recognize are: 

• Type mismatch. 

• Undeclared variable. 

• Reserved identifier misuse. 

• Multiple declaration of variable in a scope. 

• Accessing an out of scope variable. 

• Actual and formal parameter mismatch. 

Logical errors 

These errors occur due to not reachable code-infinite loop. 

 

The Science of building a compiler 
A compiler must accept all source programs that conform to the specification of the 

language; the set of source programs is infinite and any program can be very large, 

consisting of possibly  

millions of lines of code. Any transformation performed by the compiler while translating a 

source program must preserve the meaning of the program being compiled. Compiler 

writers thus have influence over not just the compilers they create, but all the programs that 

their compilers compile. This leverage makes writing compilers particularly rewarding; 

however, it also makes compiler development challenging. 

 

Modeling in compiler design and implementation 

The study of compilers is mainly a study of how we design the right mathematical models 

and choose the right algorithms, while balancing the need for generality and power against 

simplicity and efficiency. 
 

Code optimization 

The term "optimization" in compiler design refers to the attempts that a compiler makes to 

produce code that is more efficient than the obvious code. "Optimization" is thus a 
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misnomer, since there is no way that the code produced by a compiler can be guaranteed to 

be as fast or faster than any other code that performs the same task. 
 

Finally, a compiler is a complex system; we must keep the system simple to assure that the 

engineering and maintenance costs of the compiler are manageable. There is an infinite 

number of program optimizations that we could implement, and it takes a nontrivial amount 

of effort to create a correct and effective optimization. We must prioritize the optimizations, 

Implementing only those that lead to the greatest benefits on source programs encountered 

in practice. 
 

Thus, in studying compilers, we learn not only how to build a compiler, but also the general 

methodology of solving complex and open-ended problems. The approach used in compiler 

development involves both theory and experimentation. We normally start by formulating 

the problem based on our intuitions on what the important issues are. 
 

Programming Language Basics 

To design an efficient and structured compiler, we require some basics in programming 

languages.  

 

The basic concepts that are present in the study of programming languages are: 

1. Difference between static and dynamic policy 

The Static policy lets the compiler decide when faced with an issue at compile time.  

The policy that allows the compiler to take the decision during runtime is called as Dynamic 

policy. 

2. Meaning of environment and state 

t is important to ensure that the language that is being designed has the ability to map the 

data names with the respective data values before we start designing the language.  

 

For example, the execution of an assignment such as a = b + 2, changes the value present in 

the variable x. In other words, the assignment changes the value in whatever location x is 

present in. 

 

There are two stages of mapping  

 Environment 



 
 
 

  12 

S.SOUNDARYA(Assistant Professor) 

It is a mapping wherein the data names are mapped to their respective location in the 

memory.  

 State 

It is a mapping where the locations are mapped to their respective data values. This two-

stage mapping is Dynamic in nature 

 

3. Significance of static scope and block structures 

Static scoping decides the declaration of a name by examining the program text only. Pascal 

and C are few languages that use static scoping.  

The blocks in the program help to find out the scope of a variable. 

 
 

In the above example program. The scope of the variable ‘add’ is only until Block A, the 

scope of variable ‘sum’ is in Block B and the scope of variables x and y are in Block C. 

 We also see that the value of x varies in two different blocks. Here, the scope of x with value 

2 is only in block A, whereas, the scope of x with value 1 is global, or scope is in block C. 

 

4. Meaning of Dynamic Scope 

Dynamic scoping determines the declaration of a name time with the help of current active 

variables. Snobol uses dynamic scoping 
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In the above example, the value of the variable p is determined at runtime during the 

execution of the functions. a() and b(). When the function a is called, the value of d remains 

the same as declared globally. 

 

5. Methods of passing parameters 

Call by Value 

calling a function by value will cause the program to copy the contents of an object passed 

into a function. To implement this in C, a function declaration has the following form: [return 

type] functionName([type][parameter name],...). 

 

Call by Value Example: Swapping the values of the two variables 

#include <stdio.h> 

void swap(int x, int y){ 

    int temp = x; 

    x = y; 

    y = temp; 

} 

int main(){ 

    int x = 10; 

    int y = 11; 

    printf("Values before swap: x = %d, y = %d\n", x,y); 
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    swap(x,y); 

    printf("Values after swap: x = %d, y = %d", x,y); 

} 

Output: 

Values before swap: x = 10, y = 11 

Values after swap: x = 10, y = 11 

 

Call by reference 

We can observe that even when we change the content of x and y in the scope of the swap 

function, these changes do not reflect on x and y variables defined in the scope of main. This 

is because we call swap() by value and it will get separate memory for x and y so the changes 

made in swap() will not reflect in main(). 

 

Calling a function by reference will give function parameter the address of original 

parameter due to which they will point to same memory location and any changes made in 

the function parameter will also reflect in original parameters. To implement this in C, a 

function declaration has the following form: [return type] functionName([type]* [parameter 

name],...). 

 

Call by Reference Example: Swapping the values of the two variables 

#include <stdio.h> 

void swap(int *x, int *y){ 

    int temp = *x; 

    *x = *y; 

    *y = temp; 

} 

int main(){ 

    int x = 10; 

    int y = 11; 

    printf("Values before swap: x = %d, y = %d\n", x,y); 

    swap(&x,&y); 

    printf("Values after swap: x = %d, y = %d", x,y); 

} 

Output: 

Values before swap: x = 10, y = 11 
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Values after swap: x = 11, y = 10 

 

We can observe in function parameters instead of using int x,int y we used int *x,int *y and 

in function call instead of giving x,y, we give &x,&y this methodology is call by reference as 

we used pointers as function parameter which will get original parameters' address instead 

of their value. & operator is used to give address of the variables and * is used to access the 

memory location that pointer is pointing. As the function variable is pointing to the same 

memory location as the original parameters, the changes made in swap() reflect in main() 

which we can see in the above output. 

 

6. Aliasing 

There is an interesting consequence of call-by-reference parameter passing or its simulation, 

as in Java, where references to objects are passed by value. It is possible that two formal 

parameters can refer to the same location; such variables are said to be aliases of one 

another. As a result, any two variables, which may appear to take their values from two 

distinct formal parameters, can become aliases of each other, as well. 

 

 Example 1. 9 :  Suppose a is an array belonging to a procedure p, and p calls another  

procedure  q(x,y) with  a  call  q(a,a).   Suppose  also  that parameters are passed by value, 

but that array names are really references to the location where the array is stored, as in C 

or similar languages. Now, x and y have become aliases of each other.  The important point is 

that if within q there is an assignment x[10]  = 2, then the value of y[10] also becomes 2. 

 

7. Explicit access control 

 Classes and structures introduce a new scope for their members. If p is an object of a 

class with a field (member) x, then the use of x in p.x refers to field x in the class 

definition. In analogy with block structure, the scope of a member declaration x in a 

class C extends to any subclass C, except if C has a local declaration of the same name 

x. 

 

 Through the use of keywords like public, private, and protected, object-oriented 

languages such as C + + or Java provide explicit control over access to member names 

in a superclass. These keywords support encapsulation by restricting access. Thus, 

private names are purposely given a scope that includes only the method 
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declarations and definitions associated with that class and any "friend" classes (the C 

+ + term). Protected names are accessible to subclasses. Public names are accessible 

from outside the class. 

 

 In C + +, a class definition may be separated from the definitions of some or all of its 

methods. Therefore, a name x associated with the class C may have a region of the 

code that is outside its scope, followed by another region (a method definition) that 

is within its scope. In fact, regions inside and outside the scope may alternate, until all 

the methods have been defined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART-II  

LEXICAL ANALYSIS 

Lexical analysis is the process of converting a sequence of characters from source program 
into a sequence of tokens. 
 
A program which performs lexical analysis is termed as a lexical analyzer (lexer), tokenizer or 
scanner. 
 
Lexical analysis consists of two stages of processing which are as follows: 

 Scanning 
• Tokenization 
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Token, Pattern and Lexeme 
Token: Token is a valid sequence of characters which are given by lexeme. In a programming 
language 

• keywords, 
• constant, 
• identifiers, 
• numbers, 
• operators and 
• punctuations symbols 

            are possible tokens to be identified. 
 
Pattern: Pattern describes a rule that must be matched by sequence of characters (lexemes) 
to form a token. It can be defined by regular expressions or grammar rules. 
 
Lexeme :Lexeme is a sequence of characters that matches the pattern for a token i.e., instance of a 
token. 
(eg.) c=a+b*5; 
 

 
The sequence of tokens produced by lexical analyzer helps the parser in analyzing the syntax 
of programming languages. 
 

Role of Lexical Analyzer 

Lexical analyzer performs the following tasks: 
• Reads the source program, scans the input characters, group them into lexemes and 
produce the token as output. 
• Enters the identified token into the symbol table. 
• Strips out white spaces and comments from source program. 
• Correlates error messages with the source program i.e., displays error message with its 
occurrence by specifying the line number. 
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• Expands the macros if it is found in the source program. 
 
Tasks of lexical analyzer can be divided into two processes: 
 
Scanning: Performs reading of input characters, removal of white spaces and comments. 
 
Lexical Analysis: Produce tokens as the output. 
 
Need of Lexical Analyzer 

• Simplicity of design of compiler The removal of white spaces and comments enables 
the syntax analyzer for efficient syntactic constructs. 

• Compiler efficiency is improved Specialized buffering techniques for reading 
characters speed up the compiler process. 

• Compiler portability is enhanced 
 
Issues in Lexical Analysis 
Lexical analysis is the process of producing tokens from the source program. It has the 
following issues: 
• Lookahead 
• Ambiguities 
Lookahead is required to decide when one token will end and the next token will begin. The 
simple example which has lookahead issues are i vs. if, = vs. ==. Therefore a way to describe 
the lexemes of each token is required. 
 
A way needed to resolve ambiguities 
• Is if it is two variables i and f or if? 
• Is == is two equal signs =, = or ==? 
• arr(5, 4) vs. fn(5, 4) II in Ada (as array reference syntax and function call syntax are similar. 
 
Hence, the number of lookahead to be considered and a way to describe the lexemes of 
each token is also needed. 
Regular expressions are one of the most popular ways of representing tokens. 
 
 
 
Ambiguities 
The lexical analysis programs written with lex accept ambiguous specifications and choose 
the longest match possible at each input point. Lex can handle ambiguous specifications. 
When more than one expression can match the current input, lex chooses as follows: 
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• The longest match is preferred. 
• Among rules which matched the same number of characters, the rule given first is 
preferred. 
 
Lexical Errors 
• A character sequence that cannot be scanned into any valid token is a lexical error. 
• Lexical errors are uncommon, but they still must be handled by a scanner. 
• Misspelling of identifiers, keyword, or operators are considered as lexical errors. 
Usually, a lexical error is caused by the appearance of some illegal character, mostly at the 
beginning of a token. 
 
Error Recovery Schemes 
1. Panic mode recovery 
In panic mode recovery, unmatched patterns are deleted from the remaining input, until the 
lexical analyzer can find a well-formed token at the beginning of what input is left. 
 
(eg.) For instance the string fi is encountered for the first time in a C program in the 
context: 
fi (a== f(x)) 
A lexical analyzer cannot tell whether f iis a misspelling of the keyword if or an undeclared 
function identifier. 
Since f i is a valid lexeme for the token id, the lexical analyzer will return the token id to the 
parser. 
 
2. Local correction 

 Source text is changed around the error point in order to get a correct text. 

 Analyzer will be restarted with the resultant new text as input. 
 
Local correction performs deletion/insertion and/or replacement of any number of symbols 
in the error detection point. 
(eg.) In Pascal, c*i+ ‘=’; the scanner deletes the first quote because it cannot legally follow the 
closing bracket and the parser replaces the resulting’=’ by an assignment statement. 
Most of the errors are corrected by local correction. 
 
(eg.) The effects of lexical error recovery might well create a later syntax error, handled by 
the parser. Consider 
 
· · · for $tnight · · · 
The $ terminates scanning of for. Since no valid token begins with $, it is deleted. Then tnight 
is scanned as an identifier. 
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In effect it results, 
· · · fortnight · · · 
Which will cause a syntax error? Such false errors are unavoidable, though a syntactic error-
repair may help. 
 
3. Global correction 

 It is an enhanced panic mode recovery. 

 Preferred when local correction fails. 
 
Lexical error handling approaches 
Lexical errors can be handled by the following actions: 
 
• Deleting one character from the remaining input. 
• Inserting a missing character into the remaining input. 
• Replacing a character by another character. 
• Transposing two adjacent characters. 
 

Input Buffering 

1. To ensure that a right lexeme is found, one or more characters have to be looked up 

beyond the next lexeme. 

2. Hence a two-buffer scheme is introduced to handle large look a heads safely. 

3. Techniques for speeding up the process of lexical analyzer such as the use of sentinels 

to mark the buffer end have been adopted. Input Buffering 

 

There are three general approaches for the implementation of a lexical analyzer: 

(i) By using a lexical-analyzer generator, such as lex compiler to produce the lexical analyzer 

from a regular expression based specification. In this, the generator provides routines for 

reading and buffering the input. 

(ii) By writing the lexical analyzer in a conventional systems-programming language, using 

I/O facilities of that language to read the input. 

(iii) By writing the lexical analyzer in assembly language and explicitly managing the reading 

of input. 
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Buffer Pair and Sentinels 

Because of large amount of time consumption in moving characters, specialized buffering 

techniques have been developed to reduce the amount of overhead required to process an 

input character. 

 

Fig shows the buffer pairs which are used to hold the input data. 

 

Scheme 

• Consists of two buffers, each consists of N-character size which are reloaded alternatively. 

• N-Number of characters on one disk block, e.g., 4096. 

• N characters are read from the input file to the buffer using one system read command. 

• eof is inserted at the end if the number of characters is less than N. 

 

Pointers 

Two pointers lexemeBegin and forward are maintained. 

 

lexeme Begin points to the beginning of the current lexeme which is yet to be found. 

forward scans ahead until a match for a pattern is found. 

 

• Once a lexeme is found, lexemebegin is set to the character immediately after the lexeme 

which is just found and forward is set to the character at its right end. 

• Current lexeme is the set of characters between two pointers. 

 

Disadvantages of this scheme 

• This scheme works well most of the time, but the amount of lookahead is limited. 

• This limited lookahead may make it impossible to recognize tokens in situations where the 

distance that the forward pointer must travel is more than the length of the buffer. 

(eg.) DECLARE (ARGl, ARG2, . . . , ARGn) in PL/1 program; 
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• It cannot determine whether the DECLARE is a keyword or an array name until the 

character that follows the right parenthesis. 

 

 

 

Sentinels 

• In the previous scheme, each time when the forward pointer is moved, a check is done to 

ensure that one half of the buffer has not moved off. If it is done, then the other half must 

be reloaded. 

• Therefore the ends of the buffer halves require two tests for each advance of the forward 

pointer. 

Test 1: For end of buffer. 

Test 2: To determine what character is read. 

 

• The usage of sentinel reduces the two tests to one by extending each buffer half to hold a 

sentinel character at the end. 

 

• The sentinel is a special character that cannot be part of the source program. (eof 

character is used as sentinel). 

 

 

Advantages 

• Most of the time, It performs only one test to see whether forward pointer points to an 

eof. 

• Only when it reaches the end of the buffer half or eof, it performs more tests. 

• Since N input characters are encountered between eofs, the average number of tests per 

input character is very close to 1. 

 

 Recognition of Tokens 
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Using token type and Token value: 

 For a programming language, there are various types of tokens such as identifier, 
Keywords, constants and operators and so on. 

 The token is usually represented by a pair of token type and token value. 
Token type Token value 

 The token type tells us the category of token and token value gives us the 
Information regarding token. The token value is also called token attribute. 

 The token value can be a pointer to symbol table in case of identifier and constants. 

 The lexical analyzer reads the input program and uses symbol table for tokens. 

 For example, consider the following symbol table, 
 

Token Code Value 
if 1 - 

else 2 - 
while 3 - 

for 4 - 
identifier 5 ptr to symbol table 

constant 6 ptr to symbol table 
< 7 1 

< = 7 2 
> 7 3 

>= 7 4 

!= 7 5 
( 8 1 

) 8 2 
+ 9 1 
- 9 2 

= 10 - 

Consider a program code as,  
if ( a < 10 )  
 i = i + 2;  
else  
 i = i – 2; 
 

The corresponding symbol table for identifiers and constants will be, 
 

Location counter Type Value 

100 identifier a 

… … … 

105 constant 10 

… … … 
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107 identifier b 

… … … 

110 constant 2 

 
 

Our lexical analyzer will generate the following token stream  
1, ( 8, 1 ), ( 5, 100 ), ( 7, 1 ), ( 6 , 105 ), ( 8, 2 ), ( 5, 107 ), 10, ( 5, 107 ), ( 9, 1 ) ( 6, 110 ),  
2 , ( 5, 107 ) , 10, ( 5, 107 ), ( 9, 2 ), ( 6, 110 )  
Using transition diagram  

 The transition diagram is a directed graph with states drawn as circles ( nodes ) and  
edges representing transitions on input symbols. Edges are the arrows connecting  
the states.  

 The transition diagram has a start state which indicates the beginning of token and  
final state which indicates the end of token.  

 The fptr scans the input character by character from left to right.   

 For example, Write a regular expression for identifier and keyword and design a  
transition diagram for it.  
Ans:  RE = letter ( letter + digit ) * 

 The installID ( ) checks if lexeme is already in table. If it is not present then it will  
       install it. The gettoken( ) examines the lexeme and returns the token name as id or a  

             reserve keyword.   

 
The Lexical-Analyzer Generator Lex 

Lex is a tool in lexical analysis phase to recognize tokens using regular expression. 

• Lex tool itself is a lex compiler. 
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• lex.l is an a input file written in a language which describes the generation of lexical 
analyzer. The lex compiler transforms lex.l to a C program known as lex.yy.c. 
• lex.yy.c is compiled by the C compiler to a file called a.out. 
• The output of C compiler is the working lexical analyzer which takes stream of input 
characters and produces a stream of tokens. 
• yylval is a global variable which is shared by lexical analyzer and parser to return the name 
and an attribute value of token. 
 The attribute value can be numeric code, pointer to symbol table or nothing. 
Another tool for lexical analyzer generation is Flex. 
 

 
Structure of Lex Programs 
Lex program will be in following form 
declarations 
%% 
translation rules 
%% 
auxiliary functions 
 
Declarations This section includes declaration of variables, constants and regular definitions. 
Translation rules It contains regular expressions and code segments. 
Form : Pattern {Action} 
Pattern is a regular expression or regular definition. 
Action refers to segments of code. 
Auxiliary functions This section holds additional functions which are used in actions. These 
functions are compiled separately and loaded with lexical analyzer. 
 
Lexical analyzer produced by lex starts its process by reading one character at a time until a 
valid match for a pattern is found. 
Once a match is found, the associated action takes place to produce token. 
The token is then given to parser for further processing. 
 
Conflict Resolution in Lex 
Conflict arises when several prefixes of input matches one or more patterns. This can be 
resolved by the following: 
 
• Always prefer a longer prefix than a shorter prefix. 
• If two or more patterns are matched for the longest prefix, then the first pattern listed in 
lex program is preferred 
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Lookahead Operator 
 
• Lookahead operator is the additional operator that is read by lex in order to distinguish 
additional pattern for a token. 
• Lexical analyzer is used to read one character ahead of valid lexeme and then retracts to 
produce token. 
• At times, it is needed to have certain characters at the end of input to match with a 
pattern. In such cases, slash (/) is used to indicate end of part of pattern that matches the 
lexeme. 
(eg.) In some languages keywords are not reserved. So the statements 
 
IF (I, J) = 5 and IF(condition) THEN 
 
results in conflict whether to produce IF as an array name or a keyword. To resolve this the 
lex rule for keyword IF can be written as, 
IF/\ (.* \) { 
letter } 
 
 

Finite automata 
Finite automata is a finite state machine that acts as a recognizer for a language. When it is 
provided with an input string it accepts or rejects the string based on whether the string is 
from the language or not. 
 
FA recognize the regular expression that is a set of strings and accepts it if it represents a 
regular language else it rejects it. When finite automata accept the regular expression, it 
compiles it to form a transition diagram. 
 
In finite automata, there is a finite state for each input. FAcan be categorized in two ways 
deterministic finite automata and non-deterministic finite automata 
 
Types of FA: There are two kind of FA: 
 
Deterministic Finite Automata (DFA) 
Non-Deterministic Finite Automata (NFA) 
Deterministic FA 
In deterministic finite automata in response to a single input alphabet, the state transits to 
only one state. In DFA, no null moves are accepted. 
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The DFA have five tuples as discussed below: 
 
{Q, Σ, q0, F, δ} 
 
Q = set of all states 
Σ = Set of all input alphabets 
q0 = initial state 
F = Set of Final State 
δ = Transition function 
The DFA can be represented by the transition graph. In the transition graph, the nodes of the 
graph represent the states and the edges represent the transition of one state to another. 
Let us take an example of DFA: 
 

 
 
In the above example of DFA, you can notice that with a single input ‘a’ state ‘0’ transit t 
only one state ‘1’. The transition table for the above DFA is as below: 
 

 
Non-Deterministic FA 
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In non-deterministic finite automata, in response to a single input alphabet, a state may 
transit to more than one state. The NFA also accept the NULL move. 
 

 
 
In the above example of NFA, you can notice that the state ‘0’ with the input symbol ‘a’ can 
either transit to itself or to state ‘1’.  Now let us create a transition table for the NFA above 

 
 
 
With the transition table, it becomes easy to identify the transition on a given state with the 
given input. Although it takes a lot of space if there are a lot of input alphabets as most of 
the state do not perform any transition on most of the input symbols. 
 
 

Regular Expression 
A regular expression is a string that represents a regular language. An expression is said to be 
regular if the string is represented as: 
 
a*-> it means zero or more occurrence of a 
{∈, a, aa, aaa, aaaa…} // here * is a Kleene closure 
a+-> it means one or more occurrences of a 
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{ a, aa, aaa, aaaa…} // here + is a positive closure 
a.b -> it means the concatenation i.e. a will be followed by b 
a|b -> it means the union i.e. either ‘a’ will appear or ‘b’ 
So, this is the way in which the regular expression can represent a regular language. Like we 
follow the precedence of operators in mathematic like BODMAS.  
Here also we have precedence of operators in sequence: 
 

 Kleene Closure {a*} 

 Positive Closure {a+} 

 Concatenation {a.b} 

 Union {a|b} 
A regular expression is said to be valid we are able to derive the expression using primitive 
regular expressions using the finite application of rules that are a*, a+, a.b, a|b. 
 

Finite Automata to Regular Expression 
There are two methods to convert finite automata to the regular expression: 
 
Ardern’s Method 
State Elimination 
 
STATE ELIMINATION METHOD 
 

The State elimination method follows the following general set of rules: 
 

 Add a new initial state (I). Make a null transition from the old initial state to the new 
initial state. 

 Add a new final state (F). Make null transition(s) to the new final state. 

 Eliminate all states, except  I and F, in the given finite automaton. Perform the 
elimination of states by checking the in-degrees and out-degrees of states and taking 
a cross product. 

 After steps 1 and 2, the I state will not have any inward transitions, and the state F 
state will not have any outward transitions. 
 

 
 
 
Example : Regular Expression (a+ba)*ba to Automata? 
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Step 1 

  
 
 
 
Step 2 

 
 
 
Step 3 
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Design of Lexical Analyzer Generator 
• Lexical analyzer can either be generated by NFA or by DFA. 
• DFA is preferable in the implementation of lex. 

 
Structure of Generated Analyzer 
Architecture of lexical analyzer generated by lex is given in Fig. 

 
 
Lexical analyzer program includes: 
 
• Program to simulate automata 
• Components created from lex program by lex itself which are listed as follows: 

 
1. A transition table for automaton. 
2. Functions that are passed directly through lex to the output. 
3. Actions from input program (fragments of code) which are invoked by automaton 

simulator when needed. 

 
 Steps to construct automaton 
 
Step 1: Convert each regular expression into NFA either by Thompson’s subset construction 
or Direct Method. 
Step 2: Combine all NFAs into one by introducing new start state with s-transitions to each of 
start states of NFAs Ni for pattern Pi· 
Step 2: is needed as the objective is to construct single automaton to recognize lexemes that 
matches with any of the patterns. 
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Example: a {action A1 for pattern Pl} 
                abb { action A2 for pattern P2 } 
                a*b+ { action A3 for pattern P3 } 
 
For string obb, pattern P2 and pattern p3 matches. But the pattern P2 will be taken into 
account as it was listed first in lex program. 
For string aabbb · · · , matches pattern p3 as it has many prefixes. 

 
Fig. Shows NFAs for recognizing the above mentioned three patterns. 
 
The combined NFA for all three given patterns is shown in Fig. 
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Optimization of DFA-Based  Pattern Matchers. 
 
Optimization of DFA (Deterministic Finite Automaton) based pattern matchers is an 
important task to improve the efficiency and performance of pattern matching algorithms. 
Here are some key techniques for optimizing DFA pattern matchers: 
 
1. DFA Minimization: The DFA can be minimized by removing unreachable states and 
merging equivalent states. This reduces the number of states and transitions, resulting in a 
more compact DFA and faster matching. 
 
2. State Compression: The DFA can be compressed by grouping states with similar 
transitions into a single state. This reduces the memory footprint and improves cache 
efficiency during matching. 
 
3. Transition Table Optimization: The transition table can be optimized to use a more 
efficient data structure, such as a sparse matrix or a compressed representation. This 
reduces the memory usage and speeds up the transition lookups. 
 
4. Transition Function Memoization: The results of transition function lookups can be 
memoized to avoid redundant computations. This is particularly useful when the DFA has a 
large number of states and transitions. 
 
5. Preprocessing and Precomputation: Some computations, such as character class lookups 
or pattern preprocessing, can be done offline or during the DFA construction phase to speed 
up the matching process. 
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6. Parallelization: The DFA matching process can be parallelized by dividing the input text 
into chunks and matching them concurrently using multiple threads or processes. This can 
significantly improve the matching speed on multi-core systems. 
 
7. Hybrid Approaches: Hybrid approaches combine multiple matching algorithms, such as 
DFA and NFA (Non-deterministic Finite Automaton), to optimize performance based on 
specific patterns or input characteristics. This allows for efficient matching in different 
scenarios. 
 
These optimization techniques aim to reduce the time and space complexity of DFA pattern 
matching algorithms, enabling faster and more efficient pattern matching in various 
applications such as text processing, string searching, lexical analysis, and network intrusion 
detection. 
 



 
UNIT-III 

Push Down Automata: 

Context Free Language 

Context-free grammar has production rules that are used to generate context-free 
language. Context-free languages are accepted by push-down automata (PDA). 

 PDA accepts all Regular languages and CFL. 

 For all context-free languages, there must be one comparison in terminals of 
string e L= {anbn n>=0} 

A context-free Grammar (CFG) is a 4-tuple such that 

where 

 V = Finite set of variables / non-terminal symbols. These are denoted by capital 
letters. 

 T = Finite set of terminal symbols. These are used to replace the variables. 
These are denoted by lowercase letters. 

 P = Production rules are used to generate CFL. i.e. A → α , where A ∈ V and α ∈ 
(V ∪ T)*. Remember that the left side must contain only one variable, but the 
right side ((V ∪ T)*) may contain more than one terminal and non-terminal. 

 S = Start symbol 

Example Of Context-Free Language 

Consider a grammar G = (V, T, P, S) where- 

 V = { S } 

 T = { a , b } 

 P = { S → aSbS , S → bSaS , S → ∈ } 

 S = { S } 



 
The above production rules generate the strings having an equal number of a‟s and b‟s. 
It is an example of context-free language. 

DEFINITION OF THE PUSHDOWN AUTOMATON 

A pushdown automaton (PDA) is a way to implement a context-free grammar (CFG) in 
a similar way we design Finite Automata (FA) for a regular grammar (RG). A DFA has 
limited memory, but a PDA can hold unlimited memory. 

Basically, a Pushdown Automaton is 

“Finite Automata Machine” + “a stack”, where 

 FA represents a finite memory for a finite number of states 

 A stack is an extra memory with infinite size to PUSH and POP values. 

Operation of Pushdown Automata 

There are two basic Operations in Pushdown Automata. 

1. PUSH: It means inserting a new input symbol into the stack. 

2. POP: It means removing an input symbol from the stack. 

 
 

 



 

 
Note: PUSH and POP operations are always performed on the top of a stack 

Components of Pushdown Automata 

A pushdown automaton has 3 basic components 

 Input tape: It contains the input string. 

 Control unit: It takes an input and forwards it to the stack for PUSH or POP. 

 Stack: It is the memory of infinite size. 

The following diagram explains the above components. 

 

Note: A PDA may or may not PUSH or POP an input symbol in every transition. But 
PDA has to read the top of the stack in every transition. 

7-Tuples of Pushdown Automata 

Pushdown Automata (PDA) can be formally described by 7-tuples (Q, ∑, Γ, δ, q0, Z0, F) 

 Qis, the finite number of states, 

 ∑is the input alphabet, which is PUSH or POP from Stack. 



 
 Γis stack symbols. 

 Transition function: Q × (∑ ∪ {ε}) x Γ à Q × Γ * // where Q is any state ∑ is the input 
symbol, ε is epsilon, Γ is the top of the stack value, and Γ * represents all symbols 
existing in the stack. 

 q0 is the start state (q0 ∈ Q) 

 Z0 is the default value of the stack. It is used to represent the Null value of the stack. We 
can say Z0 is an epsilon. 

 Fis a set of Final states (F ∈ Q). Final states may or may not exist in PDA. 

Transition Function in PDA 

The transition function depends on the current state and three symbols 

 Input symbol 

 Stack Top Symbol 

 Push Symbol 

The Value of any symbol (Input stack or push) can be epsilon (∈). 

Let us see the following diagram, which shows a transition in a PDA from a state q0 to 
state q1, labeled as x,y → z 

 
 
This means at state q0, if we consume an input string „x‟ and the top symbol of the stack is „y‟, 
then we pop „y‟ and push „z‟ on top of the stack and move to the next state q1. 
 
 
 



 
There are three essential cases in Pushdown Automata (PDA) to understand the 
functionality of the transition function.   

As we know, the transition function is Q × (∑ ∪ {ε}) x Γ à Q × Γ *. Where 

 Γ represents the symbol which is at the Top of the Stack before the transition function 

 Γ* represents all the symbols that are present in the Stack after the Transition function. 

Example of PDA 

Design a PDA for accepting a language {0n1n | n>=1}. 

According to the given language, consider an Input string with an equal number of 0s 

and 1s as “0011∈”. Whenever the epsilon (∈) occurs as input, then that transition is the 
last. 

So, we will apply a very simple logic is that for every single „1‟ only one „0‟ should get 
POP out from the stack. 

Explanation of Transition Function 

Let‟s understand all three cases of transition function with a given input string. 

Case 01: If the symbols of Γ and Γ* are different then PUSH the symbol of Γ in stack. 

To perform the PUSH Operation for the first input “0”, the transition function and detail 
diagram are given below 

δ(q0, 0, Z0) = (q0, 0Z0)   



 

 

To perform the PUSH Operation for the second input “0”, the transition function and 
detail diagram are given below. 

δ (q0, 0, 0) = (q0, 00Z0)   



 

 

ase 02: If the value of Γ is non-empty but the value of Γ* is epsilon (empty)  

then POP the value of Γ from stack. Let see the following transition function example 

To perform the POP Operation for the third input “1”, the transition function and detail 
diagram are given below. 

δ(q0, 1, 0) = (q0, ∈)  // Now stack hold value “0Z0” 



 

 

To perform the POP Operation for the fourth input “1”, the transition function and 
detail diagram are given below 

δ(q0, 1, 0) = (q0, ∈)  // Now stack hold value “Z0” 



 
 

 
 

Case 03: If the value of Γ and Γ* are both the same (i.e. both empty) in value then there 
will be no change in stack. Let see the following transition function example 

At this stage, the stack is empty (Z0), and the last Input string having the last symbol is 

epsilon (∈). So, there will be no change in the stack. The transition function with a 
detailed diagram is given below 

δ (q0, ∈, Z0) = (q1, ∈)   // Z0 represents epsilon 



 

 

 
 

The above transition function has no effect on the stack but can change the current 
state (i.e., q0 to q1). 



 

In Pushdown Automata (PDA), 

 Only One Input symbol is read at a time. 

  Only one input symbol is either PUSH or POP in the stack at a time. 

 
Equivalence of PDA’s and CFG’s The goal is to prove that the following three classes of the 

languages are all the same class. 1. The context-free languages (The language defined by 

CFG’s). 2. The languages that are accepted by empty stack by some PDA. 3. The languages that 

are accepted by final state by some PDA 

 

 

 

 

Figure 1: Organization of constructions showing equivalence of three ways of defining the 

CFL’s We have already shown that (2) and (3) are the same. Now, we prove that (1) and (2) are 

same. Recall the following theorem from the chapter context-free grammar. Theorem: Let G = 

(V,T,R,S) be a CFG, and suppose there is a parse tree with root labeled by variable A and with 

yield w(∈ T∗). Then there is a leftmost derivation A ∗ ⇒lm w in grammar G. 1.1 From Grammar 

to Pushdown Automata Given a CFG G, we construct a PDA that simulates the leftmost 

derivations of G. Any left-sentential form that is not a terminal string can be written as xAα, 

where A is the leftmost variable, x is whatever terminals appear to its left, and α is the string of 

terminals and variables that appear to the right of A. We call Aα the tail of this left-sentential 

form. If a left-sentential form consists of terminals only, then its tail is ϵ. The idea behind the 

construction of a PDA from a grammar is to have the PDA simulate the sequence of left-

sentential forms that the grammar uses to generate a given terminal string w. The tail of each 

sentential form xAα appears on the stack 

 

with A at the top. At that time, x will be represented by our having consumed x from the input, leaving 

whatever of w follows its prefix x. That is, if w = xy, then y will remain on the input 

Suppose the PDA is in an ID (q,y,Aα), representing left-sentential form xAα. It guesses the production to 

use to expand A, say A → β. The move of the PDA is to replace A on the top of the stack by β, entering ID 

(q,y,βα). Note that there is only one state, q, for this PDA. 

 



 
Now, (q,y,βα) may not be a representation of the next left-sentential form, because β may have a 

prefix of terminals. In fact, β may have no variables at all, and α may have a prefix of terminals. 

Whatever terminals appear at the beginning of βα need to be removed, to expose the next 

variable at the top of the stack. These terminals are compared against the next input symbols, to 

make sure our guesses at the leftmost derivation of input string w are correct; if not, this branch 

of the PDA dies 

If we succeed in this way to guess a leftmost derivation of w, then we shall eventually reach the 

left-sentential form w. At that point, all the symbols on the stack have either been expanded (if 

they are variables) or matched against the input (if they are terminals). The stack is empty, and 

we accept by empty stack 

The above informal construction can be maid precise as follows. Let G = (V,T,R,S) be a CFG. 

Construct the PDA P that accepts L(G) by empty stack as follows: 

P =({q},T,V ∪T,δ,q,S) 

where transition function δ is defined by 

1. For each variable A, δ(q,ϵ,A) = {(q,β)|A → β is a production of P}.  

2. For each terminal a, δ(q,a,a) = {(q,ϵ)} 

Theorem: If PDA P is constructed from CFG G by the construction above, then N(P) =L(G).  

See Hopcroft, Motwani and Ullman book for proof of this theorem 

From PDA’s to Grammar The construction of an equivalent grammar uses variables each of 

which represent an event consisting of:  

1. The net popping of some symbol X from the stack. 

 2. A change in state from some p at the beginning to q when X has finally been replaced by ϵ on 

the stack 

(V,Σ,R,S) such that L(G) = N(P), where the set of variables V consists of : 

1. The special symbol S, which is the start symbol of G and  

2. All symbols of the form [pXy], where p,q ∈ Q and x ∈ Γ 

 



 
 

 

The rules R of G are as follows 

a) For all states p, G has the rules S → [q0z0p] (since (q0,w,z0)  

b) Let δ(q,a,X) contains the pair (r,Y1Y2 ...Yk), where ∗ ⊢ (p,ϵ,ϵ)) 

1. a is either a symbol in Σ or a = ϵ. 2.  

k be any number, including 0, in which case the pair is (r,ϵ) 

Then for all lists of states r1,r2,...,rk, G has the rules  

[qXrk] → a[rY1r1][r1Y2r2]...[rk−1Ykrk]  

This rules says that one way to pop X and go from state q to state rk is to read a (which may be 

ϵ), then use some input to pop Y1 off the stack which going from state r to state r1, then read 

some more input that pops Y2 off the stack and goes from state r1 to state r2, and so on. 

Example: Consider the PDA PN = ({q},{0,1},{Z,A,B},δN,q,Z) in Figure 2. The corresponding 

context-free grammar G = (V,{0,1},R,S) is given by: 

 

1. S →[qZq]  

2. [qZq] → 0[[qAq][qZq] (since δN(q,0,Z) contains (q,AZ))  

3. [qZq] → 1[[qBq][qZq] (since δN(q,1,Z) contains (q,BZ))  

4. [qAq] → 0[[qAq][qAq] (since δN(q,0,A) contains (q,AA))  

5. [qBq] → 1[[qBq][qBq] (since δN(q,1,B) contains (q,BB))  

6. [qAq] → 1 (since δN(q,1,A) contains (q,ϵ))  

7. [qBq] → 0 (since δN(q,0,B) contains (q,ϵ))  

8. [qZq] → ϵ (since δN(q,ϵ,Z) contains (q,ϵ)) 



 
 


